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PREFACE

This Memorandum is concerned with the application

of invariant imbedding to the study of rarefied Sas

dynamics. A new formulation of the problem of linearized

Couette flow is presented using ideas which were first

developed in astrophysics and neutrorw4ransport theory.

This study should be of Interest to spieiallists In the

fields of aerodynamics and heat transfer who are

concerned with the calculation of flow fields In the

upper atmospherej, as well as to astrophysicists and

nuclear physicists.



This Memorandum applies the techniques of

invariant Imbedding to the study of rarefied gas flows.

The problem of linearized Couette flow is investigated,

and it is shown how the assumption of the K.rook

scattering model results In a formulation uhich is

similar to that obtained In radiative transfer for

conservative isotropic scatterin In a plane-parallel

atmosphere.

By a simple enumeration of physical processes#

the nonlinear integral-differential equation governing

the reflection function Is obtained, and a suitable

transforuation 'Is shown to render this equation uenable

to nmmerioal computation.
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IxVARIANT DEED1DG AMD RARIWID GAS DYNAMICS

1.* INTRODUCTION

The use of invariance principles and invariant

imbedding techniques, originating in the work of

Ambarzumian and Chandrasekhar, has provided new insights

and computational solutions to various problems in the

fields of radiative transfer and neutron transport

theory [I]. Let us indicate how these same techniques

can be applied to representative problems in the kinetic

theory of gases. The possibility of this is suggested

by the essential similarity of all particle processes:

the behavior of neutrons or photons, or the structureless

spherically symmetric molecule of the classical kinetic

theory. For the present, we shall restrict our area of

interest to linearized scattering models, finite

collision frequencies, and relatively simple geometries.

We leave to future study the application of invariance

techniques to nonlinear scattering models and to oases

in which the Boltzmann gain and loss operators are only

conditionally convergent. A classic problem, that of

plane shear flow between two infinite flat plates, will

be used t present the ideas of Invariant imbedding in

the context of rarefied gas dynamies.
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2. KINIC-'HMRY APPROACH

Various kinetic--theory approaches to the problem of

plane shear flow are described in some detail by Willis

(2]. The physical picture is the following.

An infinite plane wall moves with a small constant

velocity Vw in its plane at a distance d from a fixed

wall. Both walls are maintained at the same temperature,

and may consist of either similar or dissimilar materials.

It is desired to find the gas velocity and the stress at

the moving wall as a function of the degree of rarefaction,

which is measured by an appropriate Knudsen number. In

the body of the gas# we shall use the single relaxation

time model of Krook (3• in its linear version. Linearization

is made possible by requiring that the Mach nwAber of the

moving wall be much les than unity, and then using

standard perturbation techniques.

We define the following quantities:

(2.1) nra ff ffd7. ¶a6n 0 -- do

.) n. fff+00 f " DnO VU00 2°

-•oe

0The noUnliea Kvok [33 equation for Wis oen-

dmensional geometry Gan be written
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(2.2) . _ 6n[f - n(!)3/2 exp(- h( -

The linearized version of this equation, obtained by

setting W Vw << 1, * (where Vw is the velocity of the

moving wail) is

(2.3) -- - 6n[if - n(.•) 3/ 2 exp(- hc)(l + 2h1÷+ )].

If r - n0 (h)3/2 exp(- ho•) + fl, where

fl no(-n 3/ 2 exp(- hoC)v$(usx)s then the equation for

the perturbation distribution function may be written

(2.l) I T- " f + 2e vJ v dudvdwJ.

The boundary conditions corresponding to purely diffuse

reflection from the wall are

(2.5) (a) Fixed plate: f+(x , 0) = 0, ho)3 eC2.-2v

(b) Moving plate: C'2(x - d) - nO(T 3  v M

where % W

It in possible to develop an equation for the function

which is closely related to the radiative transport

equation for Isotropic soattring In a plane Siab. i.e..

(2.6), -•+ f-.

The diffuse boundary onAditions aeseelated wth this

equation are

(2.7) Y-OoS *+n o* y- cog - I VW.

'"di is equivalent to V Viig that th wh

number be ever)here small. V Is proportional to the
Nah niber of the wall.



-4-

Willis has obtained a numerical solution to equation (2.6)

by recasting it in a form similar to the Mlne integral

equation of radiative transfer. In addition, he has

shown that straightforward Neumann iteration is suitable

only for the very rarefied case, corresponding to v < 1.

Since each subsequent calculation in the Neumann iteration

scheme corresponds to higher-order collisions, it is not

surprising that it is rather slowly convergent as the

collision frequency is increased. This is quite similar

to the state of affairs in radiative transfer, where it

is known that a calculation based on successive absorption

and scattering processes is Ill suited for computation as

slab thickness is increased, or conversely, as the optical

mean free path is decreased.

3. INVARIA, D,.DDING APPROACH

The invariant-imbedding approach permits us to

concentrate our attention on the value& of quantities at

the boundaries. This is particularly relevant to problems

in heat transfer and aerodynamioes. here values of

certain molecular fluxes at the boaudary are related to

such macroscopic observables as energy transport and

amemtnu transport to the walls. Once values have been

obtained for the distribution tunction at the bowidawy

homvers It Is possible to calculate value*s of the distr3-.

butlen functign within the body o the gas by velatively

sille techniques.
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The introduction of other boundary conditions

besides the presently chosen diffuse re-emission is

postponed so that we may focus on the essentials of the

technique. In addition, it should be noted that our

choice of one moving wall and one fixed wall is somewhat

different from the usual Couette flow problem, where the

two walls move in opposite directions. This choice was

made because it obviated the need for the calculation of

transmission functions. The method of linearization and

the diffuse boundary conditions at the fixed wall result

in the fixed wall acting as a "sink" for perturbing

molecules, in the sense that it emits only particles

which possess the equilibrium distribution function.

Consider Fig. 1. A reflection function

p(d,u,u6,,vv6w,w•wO) is defined which relates incoming

molecules at d to outgoing molecules at d:

(3.1) -(uvow) f f f p(d,.u.u,.V,,w~w)
o -W --

C•u q6vtw~l~duoldv dw6

U--O

d c4N

Uw

Fig. 1
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Linearity of the transport equation pe-mits us to

consider a Dirac 6-function incident distribution

centered about u0 vowo,. Thus p(d,,uoV 0,wVwWo) is

the outgoing distribution function of particles at d

due to an incident monochromatic beam at d with velocity

uOsvO,w 0 . We observe that the sink-like character of the

fixed diffuse wall guarantees that all outgoing perturbing

particles at the moving wall are due solely to the

disturbance generated by it. Simple particle-counting

techniques are utilized to relate the reflection function

p(d,u,uoVVowWo) at d to the reflection function

p(d + AuuoVwVoWWO) at d + A. We recognize that

the original disturbing beam of molecules at d + A is

modified by interactions within A, and the resulting

incoming distribution function at d undergoes the same

sort of processes at d as the original beam underwent

at d + A. A new problem is initiated at d, which

differs from the problem initiated at d + A by the tact

that the incident distribution is continuous rather than

monochromatic.

We introduce the mean free path as the unit of

lengths and use v - 6 noV0 d rather than d for the

spacitn between plates.

The spirit of the technique is ehibited In the

siaple partiele-oounting pproaeh. To teams of order

(A)2 # p(r + A,u,uO,,vovWvo) is equal to the remits
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of the following processes:

(a) The incoming monochromatic beam is diminished

by collisions in A, reflected at T, and then

diminished again by collisions in A.

(b) The incoming monochromatic beam is scattered

within A from u 0 ,v 0ow 0  to u,v,w.

(c) The incoming beam is reflected at v, and

then scattered into u,v,w within A.

(d) The incoming beam is scattered within A,

then reflected at T into u,v,w.

(e) The incoming beam is reflected at r,

scattered in A, and then reflected again at T.

Taking account of these interactions, we have

(3.2) p(v+A,uuoVvoWWo)
u•| 2v a-C2voA

- [ - Jp('u,,u0ovovooW*Wo)(I - ij + 2+

0 (r) 3/2u

+e OD 4j j p(roikuou011 v01vtsv)dfd* +

0 -- G -. 0

A consequence of the linearised Krook scattering
model in that At 1 (upv,w)/u Is the number of patiol•s
*&ioh are scattered out of the element of v"eOe1t apse
centered about u,v,w, and

Is the miber of particles scattered Into t•As esment
a12 In ma intf4ates alm thIckness A.



2 20 p c p

+ Aj j j p(ru,U,v,V,w,i)e- Vd~dVd•

• f cof f + (, o,

0 - 0 -Co

The requirments of See. 2 suggest the transformation

(3.3) p(,,u,uov 0, vOW.) - 2 - -,2,UU).

Letting A -# 0, we obtain the following symmetric fonm

for the one-dimensional reflection function S(dusu0 ):

(3.-4) S(Tuuo) + (.1+ 1 )S((uuu°)
00

0 1u 1 ,~u)d.4+~ f e" S(¶,uPu0  -~- + i-Je S r u u0
0 o 0 0

+ f 1-- S(T*Iuo)&rJ e0- S(',#u9& 0) --O
Ir0 OT 0

The initial condition associated with (3.4) is

S(OuuO) - 0, resulting from the observation that

r a 0 corresponds to the free-molecule limit when

there are no collisions within d to reflect molecules

from ui nto u.

Ohe last equation cloely resmbles the radiative-

trainport equation for Isotropio scattering in a plane
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slab that Chandrasekhar also obtains by invariance

principles [4]. A significant difference, however,

between radiative transport and kinetic theory is that

in kinetic theory, incoming distribution functions are

not generally of a delta-function character, so that it

is necessary to integrate over all incoming velocities

in order to obtain the distribution function at the wall.

The computational solution of (3.4) has been

readily obtained using techniques which were originally

developed for problems in radiative transfer. In

forthcoming publications we shall discuss this, consider

the inclusion of nondiffuse particle-surface interaction

at the moving wall, and present asymptotic observations

which are relevant to the problems of nex-_free-moleoul*

flow and slip flow.
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